Umetrics Suite Blog

What is principal component analysis (PCA) and how it is used?

April 6, 2018

Principal component analysis, or PCA, is a statistical procedure that allows you to summarize the information content in large data tables by means of a smaller set of “summary indices” that can be more easily visualized and analyzed. The underlying data can be measurements describing properties of production samples, chemical compounds or reactions, process time points of a continuous process, batches from a batch process, biological individuals or trials of a DOE-protocol, for example.

Read More

Why pre-processing your data creates better data analytics models

March 8, 2018

What do we mean by pre-processing of data, and why is it needed? Let's take a look at some data pre-processing methods and how they help create better models when using Principle Component Analysis (PCA) and other methods of data analytics.

Read More